В Российской Федерации с каждым годом возрастает наукоёмкость среднестатистического производства. Это создает для конструкторов, технологов и даже на людей рабочих специальностей необходимость владения достаточно серьезным багажом знаний в области проектирования, освоения и производства продукции своего предприятия. Эффективная работа в условиях информационного вакуума, а также отсутствия возможностей для обмена опытом сегодня будет крайне затруднительна и может привести к отставанию предприятия.
У меня часто спрашивают о применяемых методиках расчета сильфонов и сборок на механические свойства в процессе их проектирования. Думаю, не стоит делать секрета из теоретических основ проектирования сильфонов и крайне важно призвать к обмену опытом в данном направлении.
Уважаемый читатель, существует поверье, что каждая формула в статье уменьшает количество читателей вдвое, но мы попробуем все изложить достаточно простым языком, понятным среднему специалисту.
Сильфон представляет собой гофрированную оболочку вращения с толщиной стенки, переменной вдоль меридиана. Основная особенность сильфона состоит в том, что под нагрузкой он может получать значительные перемещения. При больших перемещениях существенно искажается геометрическая форма сильфона, и его характеристики по нагрузке становятся нелинейными. В основе методики решения задачи об определении напряжений и перемещений с учетом его геометрии, применяемой на ПАО «СПЗ», лежит нелинейное уравнение Е. Рейсснера*. Для тонкостенной оболочки вращения переменной толщины при осесимметричной деформации уравнения Е. Рейсснера принимают вид:
Здесь приняты следующие обозначения (см. рисунок), величины, относящиеся к недеформированному состоянию оболочки, отмеченные индексом «0»:
Расчетная схема сильфона принята в виде оболочки вращения, несмотря на то, что в силу разностенности трубки-заготовки, а также допусков на технологические операции и на инструмент, толщина стенки сильфона и форма гофров обычно не постоянны в окружном направлении. Этими отклонениями от правильной формы вращения приходится пренебрегать хотя бы потому, что они не контролируются в готовом сильфоне и их практически невозможно учесть при расчете.
При выводе уравнений Е. Рейсснера приняты обычные гипотезы технической теории тонких оболочек (в т. ч. предположение о малости толщины по сравнению с главными радиусами кривизны оболочки), а также гипотезы об однородности и изотропности материала. Принятием этих гипотез также вносится определенная погрешность в расчет, т. к. глубокая вытяжка трубок-заготовок и последующие операции пластического деформирования при изготовлении сильфона приводят к некоторой анизотропности и неоднородности механических свойств материала. Предполагая, что все гофры сильфона находятся в одинаковых условиях, в расчетах мы рассматриваем лишь одну полуволну гофра сильфона. При этом из рассмотрения исключаются краевые гофры и граничные условия, для которых параметры работы несколько отличаются от таковых для промежуточных гофров.
Дальнейшее углубление в теорию не имеет смысла, вам был изложен подход к теории расчета сильфонов, применяемый на ПАО «СПЗ». Если кто-то из многоуважаемых читателей располагает сведениями о методиках и основах расчета тонкостенных оболочек или сильфонов, отличными от представленных, просим связаться с нами для совместного поиска наиболее оптимальных решений по прогнозированию поведения сильфонов и узлов на их основе.
*Reissner, E. On axisymmetrical deformations of thin chells of revolution. Proc. symp. appl. meth. – 1950. – № 3. – P. 27-52.
Размещено в номере: «Вестник арматуростроителя», № 2 (51) 2019